
1 
 

Multi-model assessment of anthropogenic influence 1 

on record global and regional warmth during 2015 2 

 3 

Jonghun Kam
1,2

, Thomas R. Knutson
1
, Fanrong Zeng

1
, and Andrew T. Wittenberg

1
 4 

To be submitted to BAMS (special supplement on Explaining Extreme Events of 2015) 5 

September 16, 2016 6 

1 
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey 7 

2 
Cooperative Institute for Climate Science, Princeton University, Princeton, New Jersey 8 

 9 

Summary  10 

In 2015, record warm surface temperatures were observed for the global mean, India, and the 11 

equatorial central Pacific. CMIP5 simulations suggest that for the global mean and India cases, 12 

anthropogenic warming were largely to blame. 13 

 14 

Introduction 15 

HadCRUT4v4 observed surface temperature data (Morice et al. 2012; 5˚x5˚ lat.-lon. 16 

gridbox) indicates that 2015 was a clear record-breaking year for global annual-mean 17 

temperatures (Figure 1 a and b).  In this analysis, we consider only grid-boxes with at least 100 18 

years of historical data, which narrows the focus mainly to the Atlantic and Indian Oceans, North 19 

Pacific Ocean, Europe, the U.S., southern Asia and Australia (Fig. 1c). 16% of this analyzed area 20 

experienced record annual warmth during 2015 (Figure 1d).  21 

Relative to the 1881-1920 mean, observed global temperatures had over the past decade 22 

been warming at a rate less than the ensemble-mean warming in the Coupled Model Inter-23 

comparison Project phase 5 All-Forcing historical runs (CMIP5–ALL; Taylor et al. 2012). 24 

However, the record global temperature of 2015 (Figure 1 e), including the influence of a strong 25 

El Niño event (Figure 1 f), was nearly as warm globally as the mean of the CMIP5-ALL model 26 

ensemble levels for 2015.  27 
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Major regions with unprecedented annual-mean warmth in 2015 included the northeast 28 

Pacific and northwest Atlantic, while during September-November (SON) 2015, Southern 29 

India/Sri Lanka stood out with record seasonal warmth (Fig. 1 g)
1
. Only a small region south of 30 

Greenland (0.2% of the globe) experienced record annual-mean cold surface temperatures 31 

(Figure 1 d).  32 

Based on Fig. 1d, we constructed our regions of focus. These regions had some irregular 33 

shapes and were constructed to be mostly covered by new record annual or seasonal 34 

temperatures in 2015, with the two main regions of focus (aside from the global mean) being the 35 

Niño4 region (annual means) and a region including southern India and Sri Lanka (September-36 

November means). To demonstrate the robustness for annual-mean record warmth in 2015 over 37 

the Niño4 region (Fig. 1g), we also showed extended Reconstructed Sea Surface Temperature 38 

(ERSST v4; Huang et al. 2016) and Hadley Centre Sea Ice and Sea Surface Temperature 39 

(HadISST v1.1; Rayner et al. 2003) data reconstructions and found that these also show 40 

unprecedented annual-mean warmth during 2015. 41 

This study investigates the causes of these record warm events using an 8-model set of 42 

all-forcing (anthropogenic + natural) historical climate model runs, associated long-term control 43 

(unforced) runs, and natural forcing runs (CMIP5–ALL, –CONT, and –NAT). These eight 44 

models (listed in Supplementary Material) were selected as they were the only ones with NAT 45 

simulations extending to 2012. Our methods follow the studies of Knutson et al. (2013 and 46 

2014); some of the descriptive text below is drawn from those reports. 47 

 48 

Time-evolving trend analyses for long-term global and regional anthropogenic warming 49 

                                                           
1
 Our region of focus in southern India and Sri Lanka does include some SST influence, as we used the combined 

SST/Tair dataset (see Supplementary Material). 
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 Fig. 2 (a-c) shows  analyses for long-term global and regional trends using different start 50 

years, but with a common end year (2012 for CMIP5–NAT and 2015 for CMIP5–ALL; the latter 51 

are extended with simulations forced by the RCP4.5 emissions scenario). Observed trends ending 52 

in 2012 and 2015 are shown for comparison. For the sliding trends, we require at least 33% areal 53 

coverage in the region for the start year of the trend (Knutson et al., 2013), resulting in the gaps 54 

shown. The global-mean analysis shows a pronounced observed warming, consistent with 55 

CMIP5–ALL yet statistically distinct from CMIP5–NAT, for all start years before about 1990. 56 

While the CMIP5-ALL runs appear inconsistent with observed global trends through 2012 (at 57 

least for recent trends beginning in the 1990s), now that the record has been extended to 2015, 58 

we find that CMIP5-ALL trends beginning in the late 1990s now overlap the observations.  59 

 For the Niño4 region (Figure 2 b), we compare results from three different observational 60 

data sets. The ERSSTv4 shows the strongest indication of a detectable warming, consistent with 61 

the CMIP5–ALL runs but inconsistent with the CMIP5–NAT runs for start years up to around 62 

1960. In contrast, the HadISSTv1.1 estimated trends are hardly distinguishable from the CMIP5–63 

NAT runs, and also inconsistent with the CMIP5–All runs through most of the period. The 64 

observed seasonal-mean time series (SON) over Southern India/Sri Lanka (Figure 2c) shows a 65 

pronounced warming, consistent with CMIP5–ALL regardless of trend start year, and detectable 66 

relative to CMIP5–NAT for start years up to the 1970s.  67 

 Overall, the trend analysis using the CMIP5 models shows a long-term warming over the 68 

globe and Southern India/Sri Lanka (very likely attributable in part to anthropogenic forcing), 69 

and long-term trend results for the Niño4 region that strongly depend on observational data 70 

uncertainties. 71 

 72 
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Model-based attributable risk assessment for the 2015 extreme warm anomalies 73 

 Considering the anomalies and new record-breaking temperatures in 2015, there are 74 

many regions that could have been selected for the fraction of attributable risk (FAR; Stott et al. 75 

2004) analysis. The major regions of records include global, eastern Pacific, western Atlantic, 76 

Indian Ocean, Europe, and south of Greenland (cold record). For our report, we chose to 77 

compute the FAR for global temperature, the NINO4 region (with the prominent El Niño in 78 

2015), and southern India/Sri Lanka (Sept.-November). The FAR compares the event tail 79 

probabilities (P) between the CMIP5–NAT and CMIP5–ALL runs (FAR = 1 - Pnat/Pall). Forced 80 

responses are derived from the multi-model ensemble means of the CMIP5–ALL and CMIP5–81 

NAT simulations, while the impact of internal variability on the modeled trend distributions was 82 

estimated using the CMIP5-CONT runs (Knutson et al. 2013). Our FAR estimates use the first- 83 

(2015) and second-ranked observed positive anomaly as the extreme event thresholds (Fig. 84 

2d).For extremely high anomalies, the FAR can be particularly difficult to estimate, as it is based 85 

on a ratio of very small areas the under distribution tails (Kam et al. 2015). Therefore we used 86 

the second-ranked observed anomalies as the threshold values for our FAR estimates, as these 87 

anomalies are not quite as extreme as the top-ranked ones. 88 

 According to the HadCRUT4v4, the second-ranked anomalies over the globe, Southern 89 

India/Sri Lanka, and the Niño4 region occurred in 2014, 2010, and 1888, respectively, while the 90 

ERSSTv4 and HadISST v1.1 datasets show the second-ranked anomalies over the Niño4 region 91 

occurred in different years, (2002 and 1987, respectively). Based on the HadCRUT4v4, the 92 

simulated probabilities of exceeding the second-ranked anomalies for the globe, Southern 93 

India/Sri Lanka, and the Niño4 region are 58% (0.005%), 23% (0.3%), 32% (1.5%) for the 94 

CMIP5–ALL (CMIP5–NAT) runs, respectively. Sensitivity tests for the Niño4 region using the 95 
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second-ranked anomalies from the ERSST v.4 and HadISST v.1.1 datasets are consistent with 96 

the results from the HadCRUT4v4 (not shown). The FAR estimates are 0.99, 0.98, and 0.95, for 97 

the globe, Southern India/Sri Lanka (SON), and the Niño4 regions, respectively. Uncertainties in 98 

the FAR estimates were explored by computing the spread of FAR estimates across individual 99 

CMIP5 models (Fig. 2g). These sensitivity tests show that, using the second-ranked year 100 

threshold values, the estimated FAR is above 0.9 for seven, five, and five out of eight individual 101 

models for the globe, Niño4 region, and Southern India/Sri Lanka, respectively. 102 

 A crucial assumption of our study is that the internal variability simulated by the models 103 

represents the real-world variability adequately. The modeled variability is used as the null 104 

hypothesis for explaining trends, and if it is underestimated (overestimated) this makes it too 105 

easy (difficult) to detect significant trends and too difficult (easy) for model simulations to be 106 

consistent with observations (Knutson et al. 2013). Therefore, we evaluated the decadal 107 

variability of temperature anomalies over the Niño4 region by comparing a derived observed 108 

variability with CMIP5 control run variability. Variability comparisons for other regions have 109 

been previously summarized in Knutson et al. (2013), and plots similar to Fig. 2e for global 110 

temperature and the southern India/Sri Lanka region are shown in Supplemental Material.  111 

 To isolate the decadal variability, we apply a low-pass filter with a half-power point at 112 

nine years. For the observed internal variability temperature estimate, we subtracted the grand 113 

ensemble mean of the CMIP5–ALL runs from observations to attempt to remove the forced 114 

component of the observed variations. We have not adjusted the forced component estimate to 115 

better fit the observations as done in Mann et al. (2014) and Steinmann et al. (2015), which 116 

would be a further refinement beyond the scope of this study. As a sensitivity test for Niño4, we 117 

compared the modeled variability (8 GCMs shown in Fig. 2h and 23 GCMs in Supplementary 118 
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Materials) with that estimated from three different observational datasets. To estimate the model 119 

internal variability, we compute the temperature anomaly variance using each model’s entire 120 

control run. Details for these calculations, and control run lengths used, are described in Knutson 121 

et al. (2013). The 8 GCM control runs show a wide range of the simulated decadal variances, 122 

between 0.025 and 0.08 ˚C
2
. The analogous estimates of the unforced component of the variance 123 

from the observational reanalyses are 0.048 ˚C
2
 (ERSSTv4) and 0.051 ˚C

2
 (HadCRUT4v4), both 124 

of which are located near the center of the inter-model histogram of the control run decadal 125 

variances, while the HadISSTv1.1 shows a somewhat larger decadal variance (0.068 ˚C
2
) which 126 

is greater than that from five of the eight models. The sensitivity tests for observed decadal 127 

variances, and our earlier sliding trend analyses, indicate that for the Niño4 region, observational 128 

uncertainties significantly obscure the detection and attribution of past trends or recent extreme 129 

events. 
 

130 

 131 

Conclusions   132 

 For 2015, the tendency for a greater ratio of global area covered by extreme annual-mean 133 

warm vs. cold events, as seen in recent decades, has continued. According to the CMIP5 models, 134 

the risk of events exceeding the extreme (1
st
 or 2

nd
-ranked) thresholds for the globe, the Niño4 135 

region, and Southern India/Sri Lanka is almost entirely attributable to anthropogenic forcing, 136 

with the ensemble-mean FAR above 0.9, and with strong agreement regarding relatively high 137 

FAR estimates among the eight GCMs that provided natural-forcing simulations. The strongest 138 

model-based evidence for detectable long-term anthropogenic warming, and the highest 139 

confidence in a large fraction of attributable risk, was found for the global mean and Southern 140 

India/Sri Lanka (SON). In the Niño4 region, confidence in long-term trend assessment and in the 141 
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FAR estimates is limited, due to uncertainties in the observational data and a wide range of 142 

simulated decadal variances from the control runs.   143 

 144 
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List of Figure Captions 1 
 2 
Figure 1: a-b) Annual time series of the fractions of available global area with the top three 3 
warmest (red curve) and coldest (blue curve) in the available record to that date (a) and to the 4 

entire record through 2015 (b). c) Annual mean surface air temperature anomalies (˚C) for 2015 5 
(relative to the 1961-90 base period) from the HadCRUT4 data set. d) Colors identify grid boxes 6 
with annual mean anomalies that rank 1

st
 (dark red), 2

nd
 (orange-red), or 3

rd
 (yellow-orange) 7 

warmest in the available observed record. Only colored and gray areas have sufficiently long 8 
records, defined here as containing at least 100 available annual means, which require at least 9 

four available months. e-g) Annual-mean surface temperature anomalies (
o
C) for the globe, 10 

Nino4 region, and Southern India/Sri Lanka (SON).  Red (CMIP5-ALL) and blue (CMIP5-NAT) 11 
curves indicate ensemble-mean simulated anomalies through 2015 and 2012, respectively, with 12 
each available model weighted equally; orange curves indicate individual CMIP5-ALL ensemble 13 

members. Black curves indicate observed estimates from HadCRUT4v4 (solid) and NOAA 14 
NCDC (dotted); All time series are adjusted to have zero mean over the period 1881-1920. For 15 

the Niño4 region, alternative observed anomalies from the ERSSTv4 and HadISSTv1.1 16 
reconstructions and the ensemble anomalies for CMIP5-ALL are shown with +2.5

 o
C and -2.5

 o
C 17 

offsets from zero for display purposes. 18 
 19 
Figure 2: a-c) Sliding trends as a function of starting year, with ending year 2015 (black solid 20 

line) or 2012 (black dashed line) (
o
C/100 yr) for the globe, the Niño4 region, and Southern 21 

India/Sri Lanka. Black, red, and blue curves depict observations, CMIP5-ALL ensemble mean, 22 

and CMIP5-NAT ensemble mean, respectively. Red (blue) lines depict the mean of trends from 23 
the CMIP5-ALL (CMIP5-NAT) runs, while pink (blue) bands depict the 5th-95th percentile 24 
range for an individual realization chosen randomly from the simulations, with equal 25 

representation for each model. Purple shading indicates the overlap of the pink and blue region. d) 26 

Estimates of the FAR of exceeding the first (2015) and second-ranked observed temperature 27 
anomaly thresholds from the CMIP5 multi-model ensemble (large red and orange circle, 28 
respectively); black solid circles correspond to the FAR estimated from the eight paired CMIP5–29 

ALL and –NAT runs from individual CMIP5 models, for the second-ranked observed anomalies. 30 
e) Histogram of the Niño4 region variances for non-overlapping 155-year epochs of the eight 31 

individual model control runs, along with estimates from three observational datasets from which 32 
the model-estimated forced response has been removed (1861-2015).  33 
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 1 
Figure 1.  2 
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Figure 2. 4 


